三个白帽条条大路通罗马系列2之二进制题分析

netwind 2016-06-01 11:58:00

0x00 前言


该题目是一道算法题,算法涉及二次HASH加密及验证。本人通过分析,认为只有用暴力枚举的方法才能得到认证码。经过长时间跟踪,通过研究加密算法,分析出了通过枚举的方式猜解得到认证码的方法。本文将先对该题进行二进制逆向分析,然后进行算法破解分析。

0x01 逆向


直接将exe拖入IDA中,然后查找字符串Your code 和Wrong code

找到的每处所在的函数都按F2设置一个断点:

选择local win32 debugger,然后点击开始按钮进行调试:

这时候程序中断在我们设置的断点处:

上图中,如果界面显示的是汇编代码,直接按一下F5就切换到了伪C代码里了。

上面的代码具体是干什么的,我们暂时不去关心,这时按F9让程序继续执行,然后输入认证码,随便输入一串字符就好,输长一点,回车之后到达了我们之前下断的wrong code这里,IDA反编译的伪C代码如下:

int __cdecl sub_431970(int a1, int a2)
{
   memset(&v4, 0xCCu, 0x108u);   //这里memset是我肉眼识别出函数功能后做的标记
  v6 = strlen(secret[0]);//   secret[0]   一个内存中固定的字符串
  v5 = a2;
  for ( i = 0; i < 0x10; i += 4 )
  {
    v7 = 0;
    for ( j = i; j < i + 4; ++j )
    {
      for ( k = 0; ; ++k )
      {
        v2 = strlen(secret[0]);
        if ( k >= v2 )
          break;
        if ( secret[0][k] == *(_BYTE *)(j + a1) )  //a1 由b@@tS@BX@K@dn@@X转换得到
        {
          v7 <<= 6;
          v7 += k;
          break;
        }
      }
    }
    *(_BYTE *)v5 = v7 >> 16;
    *(_BYTE *)(v5 + 1) = BYTE1(v7);
    *(_BYTE *)(v5 + 2) = v7;
    v5 += 3;
  }
  return sub_42FDC0();
}

通过阅读上面的代码,以及跟踪分析,首先发现字符串a1是把我们输入的认证码依次替换掉b@@tS@BX@K@dn@@X中的@得到的。另外字符串secret[0]是固定的值为:R9Ly6NoJvsIPnWhETYtHe4Sdl+MbGujaZpk102wKCr7/ODg5zXAFqQfxBicV3m8U

通过查看内存值,便一目了然:

通过分析算法发现他的HASH加密算法如下:

把a1字符串每4个一组,如果字符a1[i]是字符串secret[0]里的字符,那么

V7=0
Hash= v7<<6+k //k是a1[i]在字符串secret[0]里的下标

如果a1[i+1]依然满足条件

那么hash= hash<<6+k;依次进行,经过4个字符后 V7从0开始 再hash后面四个字符。

把最终得到的4组hash值以16进制形式存入内存中,每组HASH得到一个3字节的数据,4组完成后共得到12字节数据。

这里随便输入的认证码,本次HASH运算完,得到的12字节数据如下:

然后第一次HASH结束。

在函数尾部下断点,F9 一次,再F8后来到了 程序最开始的函数中,也就是第一次我们断下的函数里:

继续按F8,进入了下面的函数:

int __cdecl sub_431E10(int a1)
{
  memset(&v2, 0xCCu, 0x114u);
  v9 = a1;
  v8 = strlen(a1);
  strlen(secret[0]) = strlen(secret[0]);
  if ( v8 != 12 )                           这里检查我们上面得到的HASH后的内容是否是12字节
  {
    sub_43019E("Wrong code!\n");
    sub_4302C0(1u);
  }
  for ( i = 0; i < v8; ++i )
  {
    v5 = 0;
    for ( j = 0; j < strlen(secret[0]); ++j )
    {
      if ( secret[0][j] == *(_BYTE *)(i + v9) )   //这里检查上面HASH后的每一个字节对应的字符是否在
//字符串secret[0]
      {
        v5 = 1;
        break;
      }
    }
    if ( !v5 )
    {
      sub_43019E("Wrong code!\n");    //如果不是 就挂了
      sub_4302C0(1u);
    }
  }
  v3 = malloc(16);
  memset(v3, 0, 16);
  sub_430045(v9, v3);
  sub_42F3F2(v3);
  return sub_42FDC0();
}

如果上面认证全部通过,按F9后,会进入HASH加密的函数:

这个时候需要进行加密的就是上面得到的第一次HASH加密后的12字节数据。

对这12字节加密,每4个一组,共3组,每组得到3字节数据,这样第二次HASH后就得到了9字节的数据。按F9后到达这里:

int __cdecl sub_431CA0(int a1)
{
   memset(&v2, 0xCCu, 0xF0u);
  v6 = a1;
  v5 = strlen(a1);
  if ( v5 != 9 )   //首先判断第二次HASH后的字节长度是否为9,不是就错了。
  {
    sub_43019E("Wrong code!\n");
    sub_4302C0(1u);
  }
  for ( i = 0; i < v5; ++i )
  {
    if ( (signed int)*(_BYTE *)(i + v6) < 48 || (signed int)*(_BYTE *)(i + v6) > 57 )  //检查第二次HASH后的//每个字节是否都为数字 //字符
    {
      sub_43019E("Wrong code!\n");
      sub_4302C0(1u);
    }
  }
  for ( i = 0; i < v5; ++i )
  {
    for ( j = i + 1; j < v5; ++j )
    {
      if ( *(_BYTE *)(i + v6) == *(_BYTE *)(j + v6) )  //检查第二次HASH后的每个字节是否彼此重复。
      {
        sub_43019E("Wrong code!\n");
        sub_4302C0(1u);
      }
    }
  }
  sub_42F1D1(v6);                                 //如果上面都通过了 ,就到达了胜利的彼岸了!
  return sub_42FDC0();
}

以上就是整个二进制算法的逆向过程,这里我们搞清楚了他的加密算法,下面就是尝试破解认证码了。

0x02 算法破解


针对第一部分HASH算法,我计划是从R9Ly6NoJvsIPnWhETYtHe4Sdl+MbGujaZpk102wKCr7/ODg5zXAFqQfxBicV3m8U里任意选取两个(根据需要也可能是1个)字符分别填充到b@@tS@BX @K@d n@@X,并分组进行HASH加密,再验证HASH结果是否满足条件,如果满足条件,那么就保存一下选取的字符以及HASH后的密文。

具体算法如下:

char m2[17]="b@@tS@BX@K@dn@@X",*p,*q;
    int in1=0,in2=0,in3=0,in4=0;
    q=m2;
    get(q,0,1,2);   //分组取hash  参数分别为字符串 序号  m2里需要填充的字符坐标
    q+=4;
    get(q,1,1,0);
    q+=4;
    get(q,2,0,2);
    q+=4;
    get(q,3,1,2);    //共4组到这里infos就得到了所有满足第一次HASH结果的可能的值

针对第二次HASH加密,我们把get()函数获得的所有满足条件的密文字符串进行组合,然后对每组字符串再次尝试hash加密,把得到的结果进行检查是否每个字符都是0-9内并且互不重复,把满足条件的结果记录下来。

最后完整破解认证码的代码如下:

#include <stdio.h>
#include <string.h>
#include <windows.h>
char m1[70]="R9Ly6NoJvsIPnWhETYtHe4Sdl+MbGujaZpk102wKCr7/ODg5zXAFqQfxBicV3m8U";
char sz[11]="0123456789";
struct info
{
    char *hash;  //存放第一次hash后的值
    char *mw;    //存放hash前明文
};
info infos[4][1000];
long hash(char *s) 
{   
    int j=0,v7=0,k=0;
    v7 = 0;
    for ( j = 0; j <  4; ++j )
    {
        for ( k = 0; ; ++k )
        {
            if ( k >=  strlen(m1))
                break;
            if ( m1[k] == s[j] )
            {
                v7 <<= 6;
                v7 += k;
                break;
            }
        }
    }
    return v7;
}
int check(char a,char *s)  //检查字符a是否在字符串s里
{   
    int i=0;
    for (i=0;i<strlen(s);i++)
    {
        if (s[i]==a)
        {
            return 1;
        }
    }
    return 0;
}
int check2(char *s)  //第二次hash 每次hash后检查一下 是否在0-9同时检查一下是否有重复数字
{
    int v7=hash(s);
    char *v5;
    v5=(char *)malloc(4);
    v5[0] = char(v7 >> 16);
    v5[1] = char(v7 >> 8);
    v5[2] = char(v7);
    v5[3]='\0';
    if ( !check(v5[0],sz) || !check(v5[1],sz) || !check(v5[2],sz) )
    {   
        return 0;
    }
    else if(v5[0]==v5[1]||v5[0]==v5[2]||v5[1]==v5[2])
    {
        return 0;   
    }
    else
        return 1;
}
void get(char *s,int index,int in1,int in2)  //暴力枚举 获得满足第一次hash结果的 hash密文 和明文
{
    char *p,*q,char ms[3];
    char *v5;
    int i0=0,i=0,j=0,v7=0,k=0,num=0;
    p=q=s;
    for (i0=0;i0<64;i0++)
    {
        p[in1]=m1[i0];
        for ( i = 0; i < 64; i ++ )
        {
            if (in2!=0)
            {
                p[in2]=m1[i];
            }
            else
                i=65;           
            v7=hash(p);
            v5=(char *)malloc(4);
            v5[0] = char(v7 >> 16);
            v5[1] = char(v7 >> 8);
            v5[2] = char(v7);
            v5[3]='\0';
            if ( check(v5[0],m1) && check(v5[1],m1) && check(v5[2],m1) )
            {
                infos[index][num].hash=(char *)malloc(4);
                strcpy(infos[index][num].hash,v5);

                ms[0]=p[in1];
                if (in2==0)
                {
                    ms[1]='\0';
                }
                else
                {
                    ms[1]=p[in2];
                    ms[2]='\0';
                }
                infos[index][num].mw=(char *)malloc(3);
                strcpy(infos[index][num].mw,ms);
                num++;
                delete v5;
            }

        }
        if (i<64)
        {
            break;
        }
    }
}
void main()
{
    char m2[17]="b@@tS@BX@K@dn@@X",*p,*q;
    int in1=0,in2=0,in3=0,in4=0;
    q=m2;
    get(q,0,1,2);   //分段hash  参数分别为字符串 序号  m2里需要填充的字符坐标
    q+=4;
    get(q,1,1,0);
    q+=4;
    get(q,2,0,2);
    q+=4;
    get(q,3,1,2);    //到这里infos就得到了所有满足第一次HASH结果的可能的值
    char temp1[15],temp2[15],temp3[15],temp4[15];
    for(in1=0;;in1++)    //暴力枚举 所有组合查找满足第二次条件的值
    {
        if (!infos[0][in1].hash)
        {
            break;
        }
        strcpy(temp1,infos[0][in1].hash);
        for (in2=0;;in2++)
        {
            strcpy(temp2,temp1);
            if (!infos[1][in2].hash)
            {
                break;
            }
            strcat(temp2,infos[1][in2].hash);
            p=temp2;
            if (!check2(p))
            {
                continue;
            } 
            for (in3=0;;in3++)
            {

                strcpy(temp3,temp2);
                if (!infos[2][in3].hash)
                {
                    break;
                }
                strcat(temp3,infos[2][in3].hash);
                p=temp3+4;
                if (!check2(p))
                {
                    continue;
                }
                for (in4=0;;in4++)
                {
                    strcpy(temp4,temp3);
                    if (!infos[3][in4].hash)
                    {
                        break;
                    }
                    strcat(temp4,infos[3][in4].hash);
                    p=temp4+8;
                    if (!p||!check2(p))
                    {
                        continue;
                    }
                    else
                    {
                        p=temp4;
                        char result[10];
                        result[0]='\0';
                        for (int i=0;i<3;i++)
                        {
                            int v7=hash(p);
                            char *v5=(char *)malloc(4);
                           v5[0] = char(v7 >> 16);
                           v5[1] = char(v7 >> 8);
                           v5[2] = char(v7);
                           v5[3]='\0'; 
                           strcat(result,v5);
                           p+=4;
                        }
                        for (i=0;i<strlen(result);i++)
                        {
                            char tt=result[i];
                            result[i]='a';
                            if (check(tt,result))
                            {
                                break;
                            }
                            result[i]=tt;
                        }
                        if (i==strlen(result))
                        {
                            puts("got it!!!");
                            printf("%s%s%s%s\n",infos[0][in1].mw,infos[1][in2].mw,infos[2][in3].mw,infos[3][in4].mw);
                        }

                    }   

                }

            }
        }

    }
}

0x03 验证


破解代码运行后结果如下:

得到了两个结果:

分别输入两个结果,显示如下:

第一个结果,输入后没任何反应,也不提示错误。第二个输入后成功得到flag。

分析认为这个加密算法有2个解,但是最终能解密FLAG的只有第二个才可以。

0x04 总结


本题主要是通过两次HASH运算 并分别进行验证的方式加密;两次都可以根据已知限制条件,分别采用暴力枚举的方式进行暴力破解。虽然破解代码量有点大,但是破解速度并没有收到影响,执行破解代码后能马上得到结果!

文中有分析不当或不周全的地方,希望大家批评指正!

评论

路人甲 2016-06-01 13:51:30

两次变种Base64,满足指定模式的解,复杂度不高,手工计算应该问题不大

N

netwind

挖掘漏洞为乐趣

twitter weibo github wechat

随机分类

安全开发 文章:83 篇
密码学 文章:13 篇
运维安全 文章:62 篇
Java安全 文章:34 篇
逆向安全 文章:70 篇

扫码关注公众号

WeChat Offical Account QRCode

最新评论

Article_kelp

因为这里的静态目录访功能应该理解为绑定在static路径下的内置路由,你需要用s

N

Nas

师傅您好!_static_url_path那 flag在当前目录下 通过原型链污

Z

zhangy

你好,为什么我也是用windows2016和win10,但是流量是smb3,加密

K

k0uaz

foniw师傅提到的setfge当在类的字段名成是age时不会自动调用。因为获取

Yukong

🐮皮

目录